Homotopy types within a rational homotopy type
نویسندگان
چکیده
منابع مشابه
4 Homotopy Operations and Rational Homotopy Type
In [HS] and [F1] Halperin, Stasheff, and Félix showed how an inductively-defined sequence of elements in the cohomology of a graded commutative algebra over the rationals can be used to distinguish among the homotopy types of all possible realizations, thus providing a collection of algebraic invariants for distinguishing among rational homotopy types of spaces. There is also a dual version, in...
متن کاملRational Homotopy Types of Mirror Manifolds
We explain how to relate the problem of finding a mirror manifold for a Calabi-Yau manifold to the problem of characterizing the rational homotopy types of closed Kähler manifolds. In this paper, we show that under a rationality condition on the (classical) Yukawa coupling constants for a Calabi-Yau manifold M , a rational homotopy type can be determined. If M has a mirror manifold M̃ , then M̃ h...
متن کاملHomotopy Types
For an arbitrary simplicial complex K, Davis and Januszkiewicz have defined a family of homotopy equivalent CW-complexes whose integral cohomology rings are isomorphic to the Stanley-Reisner algebra of K. Subsequently, Buchstaber and Panov gave an alternative construction, which they showed to be homotopy equivalent to Davis and Januszkiewicz’s examples. It is therefore natural to investigate t...
متن کاملRational homotopy type of subspace arrangements
Remerciements La première personne que je souhaite remercier est évidemment mon cher promoteur, Yves Félix. C'est grâce à sa patience et à sa vision que j'ai appris et apprécié le monde de la topologie algébrique. Une autre personne qui a joué un rôle important dans mon éducation mathématique est certainement Pascal Lambrechts, qui mérite toute ma gratitude pour m'avoir enseigné tellement de ch...
متن کاملHigher Inductive Types in Homotopy Type Theory
Homotopy Type Theory (HoTT) refers to the homotopical interpretation [1] of Martin-Löf’s intensional, constructive type theory (MLTT) [5], together with several new principles motivated by that interpretation. Voevodsky’s Univalent Foundations program [6] is a conception for a new foundation for mathematics, based on HoTT and implemented in a proof assistant like Coq [2]. Among the new principl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 1974
ISSN: 0040-9383
DOI: 10.1016/0040-9383(74)90012-3